منابع مشابه
Graph Ambiguity and Pseudo-primality
Recognising the types of graph on which certain distributed algorithms may fail is NP-complete. One of the results can be restated as the NP-completeness of deciding whether a graph is a non-trivial covering of some (unknown) other graph. R esum e Nous consid erons deux familles de graphes intervenant dans des prob-l emes d'algorithmique distribu ee: la famille de graphes ambigus et la famille ...
متن کاملA Potentially Fast Primality Test
The running time is O(r log n). It can be shown by elementary means that the required r exists in O(log n). So the running time is O(log n). Moreover, by Fouvry’s Theorem [8], such r exists in O(log n), so the running time becomes O(log n). In [10], Lenstra and Pomerance showed that the AKS primality test can be improved by replacing the polynomial x − 1 in equation (1.1) with a specially const...
متن کاملMiller's Primality Test
Primality test, prime In this paper we prove the following simplification of Miller's primality criterion [2]. Theorem 1. Assume that for every integer d that is 1 mod 4 and either prime or the product of two primes, the L-function I= & (k/d) l kmS satisfies the generalized Riemann hypothesis, where {kid) denotes the Jacobi symbol, defined below. Let n be an odd integer, n > I , and write n-I-=...
متن کاملBiquadratic reciprocity and a Lucasian primality test
Let {sk, k ≥ 0} be the sequence defined from a given initial value, the seed, s0, by the recurrence sk+1 = s 2 k − 2, k ≥ 0. Then, for a suitable seed s0, the number Mh,n = h · 2n − 1 (where h < 2n is odd) is prime iff sn−2 ≡ 0 mod Mh,n. In general s0 depends both on h and on n. We describe a slight modification of this test which determines primality of numbers h·2n±1 with a seed which depends...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rendiconti del Circolo Matematico di Palermo
سال: 2012
ISSN: 0009-725X,1973-4409
DOI: 10.1007/s12215-012-0088-0